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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2554

THEORETICAL AERODYNAMIC CHARACTERISTICS OF A FAMILY
OF SLENDER WING-TAIL-BODY COMBINATIONS

By Harvard Lomex and Paul F. Byrd

SUMMARY

The aerodynamic characteristics of an airplane configuration
composed of a swept-back wing and a triangular tail mounted on a
cylindrical body are presented. For simplicity, the leading edge of
the wing is considered to be straight and the trailing edge to be
shaped so that the span-loading curve is flat between the fuselage and
the wing-tip regions; the result is a nearly constant-chord swept-back
wing. A method by which other trailing-edge shapes can be studied is
indicated. The analysis is based on the assumption that the free-gtream
Mach number is near unity or that the configuration is slender. The
calculations for the tail are made on the assumption that the vortex
system trailing back from the wing is either a sheet lying entirely in
the plane of the flat tail surface or has completely "rolled up" into
two point vortices that lie either in, above,or below the plane of the
tail surface.

INTRODUCTION

The study of lifting surfaces flying at either subsonic or super-
sonic speeds at small angles of attack has been reduced, by the well-
known process of linearization, to the study of the equation

(l‘Moz) Pxx + Pyy +.Qﬁz =0 ' (1)

where @ 1is a perturbation velocity potential in a field having a
uniform free-stream velocity V, directed parallel to the x axis,
and where Mgy 1is the Mach number of the free gtream.

One basic simplification of equation (1) is brought about by
neglecting velocity gradients along the span of the wing. If the wing
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is lying in the 2z = 0 plane, this amounts to neglecting the term Oyy

in equation (1), and results in the well-known partial differential

equation by means of which two-dimensional or section characteristics -
are studied. '

Another basic simplification of equation (1) can be attained by
neglecting the term (1-MoZ) ®xx. Such a procedure is possible when the
Mach number is close to 1 or the wing plan form is so slender that
velocity gradients in the free-stream direction are negligible in com-
parison with the gradients in the y and 2z directions. Equation (1)
hag already been analyzed in these two connections in references 1 and 2
for certain plan forms. The purpose of this report is to extend this
theory, which has been named slender wing theory, to include an entire
airplane configuration.

Results are presented for a nearly constant-chord, swept-back wing
mounted on a cylindrical body having a triangular horizontal tail located
aft of the wing trailing edge. Both wing and tail are flat surfaces,
and the results are only those due to changes in the airplane angle of
attack.

A list of important symbols is given in appendix A.

I - SWEPT-BACK WING ON A BODY OF REVOLUTION -

Partial Differential Equation, Boundary
Conditions, and Form of the Solution

Under the assumption that the free-stream Mach number is 1 or that
the perturbation velocity gradient in the x direction is small, the
partial differential equation which must be satisfied for the solution
of lifting surface problems can be written

Pyy + Pzz = 0 (2)

Equation (2) is simply Laplace's equation in two dimensions, the
variables representing lateral and vertical coordinates in a plane
transverse to the direction of motion.

The boundary conditions associated with equation (2) are given
along a line in this transverse plane and specify that the fluid veloc-
1ty is everywhere tangential to the surface of the body. The problem is,
of course, to find at other points in the plane the potential that
satisfies equation (2) and fits these boundary conditions. Of particular
interest is the streamwise component of velocity along the surface of
the wing and body since this is directly related to the loading thereon. -
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Solutions to equation (2) are readily available. Two different
analytic forms of these solutions will be used in the following analysis.
One form is concerned with the use of the complex variable, the other
with the use of Green's theorem and the inversion of a real, singular,
integral equation. In general the procedure will be to use concepts
agsociated with the complex variable to map the boundary conditions onto.
a slit along the real axis, then to solve the resulting problem by

. inverting an integral equation, and finally, to use the complex variable

again to extend such a solution out into space by the principle of ana-
lytic continuation.

Discussion of notation and transformations.- The first part of this
report will be devoted to the analysis of the configuration shown in
sketch (a). The following is a description of
this configuration. Everywhere behind the
leading-edge-fuselage juncture the fuselage
is a circular cylinder having a radius rg. ‘
Ahead of this juncture the fuselage comes to y
a point, the manner being arbitrary. The
wing is a flat plate without twist or camber
mounted at zero incidence on the fuselage
and the whole configuration is placed at a
small angle of attack a@ with respect to
the free-stream direction. The origin of

wing apex. The leading edge is a straight
line with slope, dy/dx, equal to m. It
will be convenient at some places in the
report, however, to use the expression 1
vy = s(x) for the equation of the leading (a)
edge, hence, s(x) and mx are used inter-
changeably. The trailing edge is repre-

sented by the line y = t(x) and is, in

general, not straight.! The maximum semispan of the wing is denoted
by sp. The symbol 1o, as can be seen in the sketch, refers to the
lateral distance from the - x axis to the point at which the trailing
edge intersects a line that is parallel to the y axis and passes
through the last outboard point of the leading edge. Finally, co 1is
the chordwise distance from the origin to the trailing-edge-fdselage
Jjuncture.

11t was considered advisable at this tlme to consider only the rather
particular configuration outlined. As the analysis progresses it -
will be pointed out where the solution can be generalized to include,
for example, wings with twist and camber.
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A second coordinate system will also be used in the succeeding
development. Let the y,z plane be represented by the complex
variable &,

then introduce the E, plane,

£y =n + 1z, = pleiel

so that the ¢ plane maps onto the &, plane by means of the Joukowski
transformation

£y = & + = (3)

By means of such a transformation, the circle of radius ry which
represents a section of the fuselage in the ¢ plane maps onto a portion
of the real axis in the &; plane (see sketch (b));

and the part of the real axis which
lies outside the circle2 in the ¢

( p/ ane 7 4 plane maps into the remaining part
p of the real axls in the gl plane.
(-
J As a consequence of equation (3),
r— the following relations hold for zj
I s equal to zero:
& plane iz _ 1t/ iETE -
‘ ' .'Y 2 yl— 1
2
X <
...’/I";] ’ ro cos 8 = y; /2,-r1 <y,
- 1,
/ )
n- ne-ri
{b/ 5, = . y = > b YISrJ_

2

2T§e qoukowski transformation is double valued in that the regions
inside and outgide the circle p = ro both map onto the entire &,
plane. In this report only the field outside the circle is of interest.
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and
r 2 .
Yy =5+ —;’,—, yi>r,®
a__ 2 (5)
Y1 = 2rp cos 6, yi <
Further,
r 2 2
81 = 8 + —g—, ty =t + -%—, ry = 2rg (6)

From the basic theory underlying the use of complex variables in fluid-
flow theory, induced velocities in the two planes are related by the
expression

veiw = (v -1w)) gﬁé (7)

from which, since in polar coordinates
: 5 o
a T r
a—? = [ 1-—- <59> cos 26 :! + i <b<—3> sin 26 (8)

it follows that

.2 . 2 '
r /r N
v = [l - <-—9) cos 260 +w1<-9> sin 26
P -~ P

2

' 2
T 7 r
W=y [l - (ﬁ) cos 26 ‘V1<59> sin 26 oy (9)
’ | o\ o\ .
Vp = {vl cos B+w; sin 6 [l- 5 +2wy = sin GJ

Lastly, Laplace's equation must also be satisfied in the €, plane,
hence

(91) + (91)y,y, =0 | (10)

212,
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Boundary conditions.- In this part of the report (part I), the
effect of a cylindrical body mounted on a nearly constant-chord swept-
back wing will be studied. (Reference 3 contains an analysis of the
effect of a cylindrical body mounted on a triangular wing, and reference L
presents results for a swept-back wing with no body; both references
use the assumptions of slender-wing theory.) The boundary conditions
will be presented in the y,z space first and can be written

IS

]

(i vp =0 p =1ro, 0<0< 21
r b (o} - =

(i1) w =0 z =0, t2<yi<s? (11)
b 2

(ii1) v =0, w = Vea, p ==, 0<6<2x J

Equations (11) represent the conditions for a cylinder located at

p = ro and two wing panels located between +t and #*s on the real
axis, both cylinder and wings being at rest in a free stream which is
. moving with velocity w = Voo at infinity.

- It follows from equaetions (9) that these boundary conditions
become, in the £, plane,

2 2
(1) wy =0, 0<y1 < r3
2 2 2
(11) w, = O, t; <y, <s; (12)
(iii) vy = 0, wy = Vo1, p; =w, 0<O<2n

Equations (12) represent the boundary conditions for three wing panels
along the real axis, all at rest with respect to the free stream moving
with velocity w; = Vya at infinity in the transformed plane.

It is more convenient to work with boundary conditions which vanish
at infinity, however, so the final form of the conditions which must be
satisfied is derived from equations (12) by subtracting the free-stream
velocity Vsa. There results

- Vg, 0<y°<r?

(1) W

(i1) wy = t, %<y <, ® (13)

I
1
oy
&

(iii) vy =wy =0, p; =, 0<6<2x
General solution.- The general solution to equation (10) which
gives the vertical induced velocity wy at a point in the §; plane
due to the jump in the value of the induced velocity v; across the Yy,
axis can be written (see, e.g., reference 5)
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S
1 (y1-y2)avy(y2)
1 1772 1Nz
Wl(yl,Zl) = - 2'— > > dyz (lh')
m (yl'yg) +Zl ‘

where Yy, 1is the variable of integration. Set =z, equal to zero and
there results the value of the vertical induced velocity on the 1y,
axis. Thus '

51
1 &vy(y,o)
-—:.!.'-—_é_. dy2

21 Y1=Y%
_sl

Wl(yl) = Wl(leO) = - (15)

Equation (15) is the form of the solution which will be used to
analyze the problem previously outlined. It is apparent by reference to
the boundary conditions listed as equations (13) that in equation (15)
the value of w; 1is the known quantity and Av; is the unknown. Hence,

‘equation (15) is an integral equation which must be inverted in order

that the solution can be written. Such an inversion is not difficult if
the value of w; 1is known everywhere in the interval -s;<y;<s;. In
the present case, however, there is a subinterval r12 <yl2<t12 in
which w; 1is not specified, and further, in which Av,; is not neces-
sarily zero (due,to the presence of a trailing vortex sheet). It will
be shown in the subsequent development that the assumption that Avy

is zero in this interval (i.e., no vortices are shed by the wing ahead
of the interval) yields a nearly constant-chord, swept-back wing; with
such a restriction the inversion can again be performed.

Given the inversion of equation (15), it is possible to write both

wy and vy for certain portions of the real axis. All along this axis
the functions w; and v; are, of course, real. Hence, it

£(61) = vy(¥1r21)-1vy(¥1,25) (168)

then by analytic continuation

£(g1) = v(g;1,0)-1w (£;,0) o (16p)

Therefore, the inversion of equation (15), together with equation (16),

gives sufficient information to determine the induced velocities through-
out space.
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‘Particular solution for the nearly constant-chord wing.- Adopt the
- notation Avyy equals Avy; in the region of the y; axis representing
the body or fuselage in the §&; plane; Av,, equals the value of Av;
in the region of the y,; axis representing the space between the fuse-
lage andsthe wing; and Av;y equals the value of Av, in the region of
the y; axis representing the wing plan form. Then if Avig =0 (the
calculation of the trailing-edge shape corresponding to such a choice
will be presented later), equation (15) becomes

= Av 1 Av 51 '
wlg-}_ ——-—1Edy2-£ _.._1bdy_.l_ __.l_AVWdy
en Y1-Ya en Yy1=¥2 "2 2x Vi-¥s 2
=81 -Tr1 t1

(17)

Since the airplane is laterally symmetrical, the span loading is sym-
metrical and APi(y;) = AP;(-y1). Therefore, Avi has the property

ANl(yl) = = Av1(-y1). By means of this relation for Avy and the addi- .
tional change in notation

2
M1 = Y3
] (26)
Mo = Y2
equation (17) can be written
r12 812
M) = - 5 —_— - —_—
E A M1-M2 ety 5, Mm-Mz
ty

Equation (19) will now be inverted under the condition that
Wy = - Voo for O0<mn;<r;? and for t,2<1;<s;2, and under the addi-
tional condition that (Avyy) 5 = (Avyg) _y 2 = 0, which smounts to
' M=ty M=%
assuming the Kutta condition along the wing trailing edge (see, e.g.,
reference 4). This inversion is accomplished by a double application
of the following solution (see appendix B): If

b
Av da
£(ny) = - = Avy(nz)dn (20a)
2n n1-1
a 17z

then, under the condition that Av,(a) =0

b
avy(ny) = 2 / "l'af fng)  foonz dn, (20b)
ny/ b-m A M-z J M2-2
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Now write equation (19) in the form _
2 2

81 ry '
Vo + & Avyydny 1 Avypdn 2
2n %, - Ny-Na 2 A Ty =No

and then, since Avlb(o) = 0 Dby reasons of symmetry, apply
equation (20b). For 0O< nl<r12, there results the expression

e / 525 vy o
A e — \/P | = [ 2L an,
rS-m T TE-my /2 M Na
1

(21)

Substltute equation (21) back into equation (19), reverse the order of
integration and, for t; <Tll<512’ there results

Sl d ‘
W= - = / f g('ﬂz) Na (22)
1-r1 Ni-fz

where

g(ny) = aviu(n,) (23)

Again apply equation (20b), this time to equation (22). In this way
g(n,) can be shown to satisfy the relation ,

g(n) = - Ve ;—5—-— (24)

and equating this expression to equation (23) gives

n1(n1-t1%) ‘
Avyy = - 2V , 5 %< <s® (25a)

(s,%-1,)(n;-r,%)
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A repetition of the above process yields 3

2

t.“-

Ay = - 2Voa/ “21( 2 "12), , O<m<r,® (25v)
(s15-n1)(r1"-11)

The results given by equations (25) can be extended to other points
in space by analytic continuation. Equations (16) indicate the necessary
procedure. Hence, since (vl)z o = Avl/2,

1=

. . 61" (2
Vl(ylyzl)'lwl(yl,zl) =Voa | 1+ (

812_§ 12) (512_1.12)

2 2
_tl)

(26)

SWhen the method is applied to a value of w; which has some given
variation with 1n; there results

2
o 11(t,%-n,) 1wy (ny) (812-n2) (r12-n2)
Avlb(nl) = R > > dT]g = +
(r12-n1)(s13-11) N1-Ms n2(t12-12)
(]

2
51
f w1 (n2) an (712'1‘12)(312-'7]2) 0<1n,<r 2
’ 15T
P M1-N2 2 712( T]a'tlz) :
t1
and
2 2 2_
‘ 2 M2(Nn1-t12) Ty wi(no) ana (r12-n5)(s123-n5) .
Avlw(ﬂl) = X > = (t . )
(31 ""11)("]1'1'1) N1i-Nz Nalty =Mz

2
51
2 2_p)
- S, =
f Wl(ng) d'ﬂz (n2 Ty )( ;- N2 ) t12<T]1 <Slg
4,2 M1-M2 na(nztr”)

1
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Equation (26) has several branch points so it is not uniquely defined
without specifying the cut from -« to s; along the real axis in
the ¢; plane (see sketch (c)). :

In the upper half of the &1 plane
0, varies between 0 and n and
in the lower half, between O . (‘
and -n. Notice that when ¢£&; 1is /4<f /
at a very large distance from the

origin in any direction the mag- ’

nitude of the term on the right-
hand side of equation (26) tends

to zero, so that the boundary s s
conditions at infinity are satis- / Af{ . -
fied. It is evident that the Cut in & plane
other boundary conditions in (c)

equations (13) are also satisfied.
The Trailing Edge

Special trailing-edge shape.- Equation (26) is a solution to
Laplace's equation and represents the flow around a wing and body.
However, the plan form of the wing has not as yet been evaluated,
although it has been fixed as that which makes the value of Avy vanish
in the region between the wing and the body. Since Avy is the
gradient of A9, in the y; direction, and further, since (A@l)T E

(the value of AP, at the wing trailing edge) equals the total circu--
lation TI; about a given chordwise section, this amounts to the same
thing as assuming that there are no trailing vorticies between the wing
and the body. It is a further consequence of such an assumpiion that
the span loading ahead of this region is a constant for rg2<yo2<to2.
The configuration which will produce such a flow must now be determined.
In particular, if the leading edge is taken to be a straight line, the
equation for the trailing edge is unique and needs to be expressed.

One of the simplest ways of finding the shape of the trailing edge
is to find APp g, from equation (26) and solve for t as a function
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of s for a fixed value of ry, and APp g, . The constant represent-

ing A9 . 1s the value of the jump in potential at the point P in

sketch‘?é§. Here A9 is known (see, e.g., reference 3) since there is
no gap to make its solution indeter-

minate.
< Consider an arbitrary section, as
4 AA in sketch (d), downstream of the

point P. The value of Av,, at such
a section is given by equation (25a)
and the solution for A,y follows by
definition and is

J1 Z.1 2
Y=t

AP, = -2V f Y dyz
» (812_y22)(y22_rl2)

51

(27)

Equation (27) is an elliptic integral
which can be easily reduced by means of
the substitutions

2 2 2 2
k2o 810 y2  t1-ry 8
1 = - S = ——E———é (2 )
Sl 'rl Sl -I‘l

and by using the Jacobian elliptic functions defined, in this case, by
(31?—t1?)sn?u = slé-ylz, en®u = l-snzu, dn®u = l-k12sn2u

to the form

APy = 2Vpa /512'r12 [E(kl:W1)'k1f2F(k1:*1)J (29)
2_. 2
v = /2 (30)
8, -tl

and where the incomplete elliptic integrals E and F are defined in
the list of symbols (appendix A). Equation (29) reduces to the results
given in references 3 and 4 when there is no gap or no body, respectively.

where
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At the trailing edge v1 = t1, and equation (29) becomes

: 2
(ACPJ.)T.E. = Vo ,/ 312"1"12 <E1-k1' Kl) (31)

where the elliptic integrals are now complete. Transform this to the
physical plane, using equation (6), and set : '

=v‘/( szte-ro2)(52-t2)

ko
t(s%-r7)

ko ' = l-ko

(32)

then there results

A s . 52-r02 )2
Pp.E, = Voo . Eo-ko' Ko | (33a)

At the juncture of the fuselage and the wing trailing edge (the point P
in sketch (d)), s equals me, and t equals ro, so that
equation (33a) reduces to

(20)1.E. = 2Voumeo [l- r—°>2 J (33p)

mco

As was pointed out, the solution for the equation of the trailing edge
can be obtained by equating these two values of (A®)qp_ g.. Hence

2
o - = = o-ko' Ko
meg 8

or
=
r
()
tS-mecot 2 = -rs2 =0 (34)
Eo-ko' Ko ‘
Set
2
r
- (2]
me,
G = mco =
Eo-ko' Ko
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and since s equals mx

-r mx
k v _ ( o) )
O -I' >

From equation (34) the solution that gives the correct trailing-edge

shape can be written
/2 2
G + &G +hrg (35)

2
and from the definition of ko'
.'r 2
t2-ro? + W (£2-r,2) Bk, 1202 (36)
mx =
2ko 't

If ko and ro/mco are fixed, t/mco is determined from equation (35);
and a fixed ko', ro/mco and t/mco determines x/co from

equation (36). Hence, it is relatively easy to calculate numerically
the shape of the trailing edge.

Sketch (e) shows the shape and position of the trailing edge when
the wing leading edge is swept back 45° and the radius of the fuselage
is 31.6 percent of the extended root chord, cg. (A dimensionless
coordinate system is chosen,
however, so that the results
y/me ? i
: 0 5 (/] 10 can be used for various values
/.0 4 4 of m ‘and cg.) Shown also,
for comparative purposes, is
the position of the trailing
edge when there is no fuselage -
the condition in both cases
being, of course, that no
vortices trail back in the
. region directly behind the wing.
.51 Trailing edges . Table 1 presents coordinates of
the trailing edge for several

X /) /m Co values of I‘o/mco-
Co 0

.3/6
2.0 -

(e)
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Sketch (f) indicates the
variation of the local chord
along the span for ro/mco
equal to 0.6, 0.316, and O.

It is apparent that the

‘effect of the body is to make
the trailing edge more nearly
that of a constant-chord wing.
The asymptotic value of the 9
wing chord is given by the

equation
2
=2 [1- <-1:-°— } (37)
co 7 mco
where - - v - N
_ 0 / y/mc,
1lim ( t> (f)
C = ) Ko e
® XP o m ,

More complete results are
given in table 2.

Other trailing-edge shapes.- The procedure just presented can be
‘generalized and used to calculate trailing-edge shapes corresponding to
arbitrary span-loading curves. Suppose that the span loading in the
transtormed (or §1) Plane is represented by a power series in y; in

the interval r;2<y,2<t;2. Then the circulation in this interval can
be written

m
I(y,) = z by, ®

n=o0
and, hence, Av,g, the value of Av,; in the same interval? becomes

m ;
AVla = 2 nbnyln-l
n=0

Equation (19) now takes the form
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tlz T 2 2

1 51
w o+ L Avy gdn, 1 J[‘ Avipdn, 1 [ Avy ydng
l ot ———-—-——-——:—‘—- —————— . — s .
Qﬂ\flz nl—n2 2n A nl n2 2n tlz nl n2
The left-hand side of the latter equation varies with n1 in a given
manner depending on the b,'s in the expression for [I'. Hence, the
equation can be considered as identical to equation (19), the left side
being regarded as an effective w; 1in equation (19). The analysis
succeeding equation (19) can now be repeated in terms of the equivalent
wi. There results an equation for the trailing edge which depends on
the bp's.

By the process outlined, both the trailing-edge shape and the span-
loading curve have been expressed in terms of m + 1 constants. By
varying the number and magnitude of these constants, a large class of
trailing-edge shapes can be obtained.

The Wing Area

Having found the shape of the trailing edge by the methods outlined
in the preceding section, it is now possible to determine the area of
the wing. Denote this area, region 1 in sketch (g), as 5, and the area
of region 2, shown also in the sketch, as Sz;. It is evident that the
sum of these two areas is simply

f\O* y Sl+82=%(mx_ro)<-:;‘70 =
T /M
m / ry\2
[o 5 (&

Replace Sy by its integral
equivalent and there results

2
m To
Sl = é <X- El_ hand

X t(x)
I

(g) x
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.

If a dimensionless system based on the length c, 1is adopted, one can
write for the total area (i.e., both panels, see the ghaded area in
sketch (hl)) of the wing the equation '

x/cq - o
2 2 o

S X r T T X

- (2) (2) ceze [ La(®)
mCO Co mco mCO 1 mCo Co

where t/mco is given numerically as a function of x/co in table 1
(y/mco in the table representing t/mco). Numerical relations between

the parameters S/mcoa, ro/meq, so/mco, and tg/sg are presented in
figure 1.

The area of a wing with another
kind of tip shape can be readily r+=
evaluated once the particular tip
shape is specified. For example, the
area of the wing shown in sketch (h2)
can be calculated by subtracting a
rectangular area (given by the sum of l
the two triangular regions labeled 3 ) |
in sketch (h2)) from the area of a

sketch (hl). ’01
Downwash Behind Wing (1)
-
The equation for the downwash
behind the wing and in the 2z = 0 |
plane follows immediately from I
equation (26). 1In the transformed
€, plane the value of wy; is
) Jxl.‘ || \XJ
Wy = = Vou, 0<y18<rZ4,5%<y1 %, 2 £L-- ""ld —-->
(2)
(38a)
(h)

and

2/, 2 2
y1 (t,7-y17) 2 > 2
wy = =-Voa |1 - P =5 y T1T<yit<t
(Sl -y1 )(yl -r; )

(380)
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In ordé} to transform this value to the physical plane, care must be
taken to go backwards through the boundary conditions in the proper
order. Equations (38) represent the solution for the boundary conditions
presented in equation (13). To find the solution for the conditions
given by equation (12) a free stream Vgo must be added. Thus, in
mathematical notation,

(w-l)1 = (w ) + Voo

where the subscripts 12 and 13 refer to the boundary conditicns satis-
fied: Finally, to find the downwash in the physical plane, the transfor-
mations given as equations (9) and (5) must be employed and the free
stream subtracted so that

ye'roz

y2

—‘VOa

w(y) = [ (1) |+ Voo }

where (Wl)ia now becomes

(wq) 18 = - Vo, 0L y2< r2;t8< y2< g2

and *
y2+ro (y262-ro*) (¢2-¥%) | 2
(Wl)l = - Voa » <y2<t
8 -ro (Sgyz-ro4)(52-ye)
Combinihg and simplifying, one finds
w(y) = - Vou,0< y2< r&t3< y?< g2 (39a)

and

2 _2 2
+r t -r t -
W(y) = - Voa, 1 - Z___O__ <_S_> (y 0 )( y ) , r2<y2<t2

v Nt/ (Eyrr®) ()

(39b)
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The accompanying sketch shows the variation of -W/Voa in the
intervals for which it has been given. If no wing is attached to the

cce
1.0 >
-w\
box 5] Wwith body —_—
' Without body -----
12 .~ y/mcg
0 :
- .51
- 1.0+

(i)

body (or if the gap is very large) the fluid at the side of the body is
moving upward at a speed equal to that at which the body is moving down- -
ward. The presence of the wing restricts this motion and as the wing
banel approaches the body the air in the gap is forced more and more to
move downward with the wing and body. The dotted lines in the sketch

show the variation of -w/Vga if no body is present, that is, if rg
equals zero. .

- Chordwise Load Distribution

Loading on the wing.- The loading on the wing can be calculated
by means of the linearized equation for the loading coefficient. This
equation can be written '

.<Ap 22 AR, | *~‘ © (40a)
e/, Vo Vo Ox . g




20 ‘ NACA TN 2554

Tt is somewhat easier to calculate the loading if the derivative of A®y
is taken in the §&; plane. If AQyy is considered to be a function

of the two independent variables y; and sy, equation (LOa) can be .
modified slightly to read
(Ap) o OAP, . ds; ds (140b)
- )= = — = = Ob

AL
The value of P1W  an be obtained by differentiating equation (29),
thus ds,

aﬁ¢lw = 2V
= Vo

s
98 W 818-r,?

[E(kl,\#l)-klveF(kl,\Vl)] +

dE(k dF( k '
/‘9:2:'_1—2- {> ( 1’¢l) _ k112 __.(_a_sli.m - 2kl 'F(kl,‘yl) i‘i{_l-
1 d

L asl Sl
which becomes
OAQ1w oy [ s N >
= o { ————=——— | Elk k!
asl 1 /é:a-:[‘? [ ( 1, 1) ki F<k1,‘¥1)} + x

2

- dk 2

5,2-1, % <F(k1,¢l)+q,l 1 "‘21 2) Ky —2 +k 2 1-2 ¥,
1-k3°¥; dsi 1-k; le ds1

S

(41)

The terms dk,/ds, and J¥;/dsy both involve dt,/ds, which is

prpportlon?l to the slope of the trailing edge in the transformed € ,
Plane. Thls latter derivative can be readily obtained from equation (41)
1tsiif ilnci the value of (Ap/a), and hence dAPrw/ds; must be zero

on the trailing edge, that is, where y; equals t; and e 1s 1
This yields the relation ’ ! ! b e

aty  5E (12)
<
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by means of which the identities

-awl s <\j!lE1 .\ 1_¢l2> %
2

981  s32-r; ki1%K; ik, 2

end a ) (43)
2
k dkl -8 <E;L'kl ! K_'L)
1 —— T
dsl Slz'rl2 Kl J

can be written. Place equations (U41) and (43) into equation (Lob), and -
there results for the loading

1 rAp 5 E1
m qa - / 312_1.12 Kl ‘

}%I «/(_1‘“’12)(.1'1‘12%2) ]

Transforming this to the ¢ Plane, one finds, finally, since
ds, /ds = 82-ry2) /g2 '

2 2 '
1 <A_P> =4 220 | p(kg,¥) - O F(ko,¥o) +
m\ g/ T2 Ko ‘

2 2 ’ 2 .2 2,2 4
82(y2-r 2) /(y -t2) (y%t2-r *) ()

yt(s2-rs2) (82-y2) (s2y2-ry*t)

where ko is defined by equation (33) ana

8- g2 24r04
vo =t M/( 2-y=) (s®y ) (45)

y (6®-t3) (s2t2r %)

In the special cases when there is no body or when the wing is
triangular, equation (44) agrees with the results presented in
references (4) and (3), respectively. A discussion of the chordwise
load distribution over the wing will be given at the end of this section.
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Loading on the body.- The variation of the load distribution over
the body can be calculated in much the same way as that over the wing.
It is first necessary, therefore, to find the jump in potential between
points directly opposed above and below the z = O plane. In the €,
plane this difference follows immediately from equation (25b) just as

-~ equation (27) was written for A®ns. Hence,

t1 2 . 2
Acp - f y/ y2©-t1 4
1 = - eVl 2 Yo =
. (312‘Y22)(Y22-r12)
1
y 2 2
oy \/Pl b1 Ve Gl (46)
o Jo Ye
( Slz’yge) (rlz'yge)
ry

The first of the integrals in equation (46) has already been evaluated
and the second can be reduced by means of the transformation

(tlz’Y22) sn®u = rlz'Y22

After some manipulation, equation (46) becomes

2 2
APy = 2Voa {EI'E(k1:WS)+k1' F(ky,Vs)-ki' Kl} Js18-r1% +

Vo J/ZSIZ'YIe)(rlZ'YIa) (57)

2 _ 2
t17-v1

where k; is defined by equation (28) and

. 2_. 2
¥y = /r_lg_yiz. (148)
t15-y1

Using the equations (42) and (L47), one can write for the loading on the
body (after differentiation and simplification of equation (47))
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g2

1 /A | s2+r 2 B ,
n Cﬁ)b = ( . > Kf F(ko’*e)'E(koﬂ’g) +

2k02( sa_roa) t / . ’ roz_'yz " (h9)
[(t3+102)2-ky2t2] [ ( s%+1r%)2-by2s?] '

where ko 1is defined by equation (33) and

¥, = 2t _ToZyE | (50)
( _t2+r02) Z_uy2t2

Again equation (49) agrees with
previously known results in the
limiting cases when the body .6
vanishes or when the wing

becomes triangular.

10

“‘ \ T T T

\| ~Two- dimensional

| ]
‘\\ //Vo body
L I
qem R

______

Section A4  |D\_

Digcussion of the chord-
wige loading.- Equations (L4%)

and (49) form the basic results ©6 percent chord 100
of part I of this report. 10—y T 10—y ——
Graphs Of ‘the loading coeffi_ “\\‘ Two - dimensional “‘\\J/Tva-dimmsional
s . \ } N — i
cient for a wing alone and for N A 2o \ ¥ soay
a wing-body combination (ro/mco a0 \\\ —4e )\
equals 0.316) are shown in qoem N P
s o AN
sketch (j1). The results for | section 58 secrion 6
the case of zero body radius ' —
could have been obtained .
direct]_y from reference )+. 00 Percent chord 100 ° Percent chord 100
They are shown here for the 10— 10— —
purpose of a qualitative com- ‘\\-——-Two-dimensianal ‘\\Y/‘rwa-dihmsicna/
A 1 » 1
. » T n T
parison. Unfortunately, the \ |-¥o soay \ L Mo body
load distributions on the two 40 X a0 >
wings cannot be compared quan- qxm AN qaem \\
tatively on the basis of equiv- section oo section EE
alent plan forms since the
trailing-edge shapes differ 5 i

s s s 4 . o
significantly. The variation 0 Percent chord 100 0 Percent chord 100

(1)
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of the loading along the center line of the body is shown in sketch (j2).

4 T T . —
r,/me,=.316 ‘
Aap ° /A

= - ¥
goem ////A \ c, |
// Loading along \ !

section AA S~ Ll_ N
A

N

0 4 .8 1.2 16 2.0
x/Co

2l

On +the basis of the load distributions presented in references 3
and 4, the qualitative variation of loading shown in sketch (jl) is
obvious. That is, the loading falls steadily from its infinite peak at
the leading edge to zero at the trailing edge. On sections which are
cut by the Mach wave from the trailing-edge fuselage Jjuncture, the slope
of the curve is discontinuous.

The change in the load distribution brought about by the presence
of a wing tip is the same for a wing-body combination as for a wing
alone. The behavior of the loading in the vicinity of a tip has a
straightforward explanation in terms of the trailing vortex sheet.

Thus, if the wing is cut off along a line perpendicular to the free-
gtream direction, the vortices which were bound in the wing all turn and
trail backwards with the same distribution in strength? as they had when

4This assumes, of course, that the vortices have not begun to roll up to
any significant extent.




&

by equation (4k4).

‘the new Mach number is subsonic or supersonic.
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crossing the last spanwise section of the wing
(see sketch (k)). Since the vertical induced
velocity along the last spanwise section was made
constant (by finding the appropriate solution to
the integral equation), it must also be constant -
and, in fact, the same constant - everywhere in
the vortex wake. Hence, if a flat surface having
the same angle of attack as the wing is inserted
anywhere in the wake it will in no way disturb the
flow and consequently there will be no loading on ]
such -a surface (just as there is no loading on the Lo Vortex l”“
vortex wake itself). The loading is zero, therefore, wake

or the tip regions marked 2 in sketch (k); the load-
ing in the regions marked 1 being given, of course,

It is interesting to see how the distribution
and magnitude of the loading given.by this
(slender wing) theory compare with linearized
theory results at some Mach number other than 1.
The differences caused by considering Mach numbers
other than 1 depend, of course, on whether or not

This discussion must be limited to a comparison

with supersonic Mach numbers only, since theo-
retical chordwise load distributions over.swept-

back wings flying at high subsonic speeds are not
available. The change in the loading brought about by
increasing the speed can be divided into two parts:
one, a change caused by the rotation of the Mach
lines which form the boundaries of the various (k)
regions in sach of which the shape of the loading

curve takes widely different forms; and the other,

a change in the magnitude of the loading within

each of these regions.

Sketch (1) indicates these effects. Thus, on the wing flying at
supersonic speeds the sharp drop in loading occurring at a critical Mach
line moves farther back along the chord from point b to point a in
sections AA and BB shown in the sketch. This causes a considerably
higher value of the loading for the supersonic wing® in regions 1 and 2.
A similar effect occurs on the body traveling at a supersonic speed where

now, however, the traces of the Mach lines are no longer straight but,

SSolutions showing the effect of crossing critical Mach lines on a
swept-back supersonic wing are given in references 6 and 7.
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due to the curvature of the body, form
helices. Region 3 in the supersonic case
would be a region of zero loading and region 4
would be a region of high loading relative

to the sonic value.

The relative magnitude of Ap/qa within
the various areas bounded by the wing edges
and the pertinent Mach lines changes as the
reference section moves outboard along the
wing span. Along inboard sections ahead of
region 1 in the sketch (i.e., ahead of the
sonic Mach line from the trailing edge root)

. the loading on the sonic wing is higher than
YAy \ —- Supersonic that on the supersonic wing. It is well
Joc \{:"AJ =/ known, tor exampie, that in the case of a
N triangular wing without body, slender-wing
N theory gives a loading E times the loading
\QQ‘\ b obtained at a supersonic Mach number (where
\:¥ﬁg; E 1is the complete elliptic integral of the

\

second kind with modulus ,/1-mpZ and is given

closely by 1 + % m2p2 (1n ji o1 for
A4p \ 2 mg 2
goe | N small values of mB). On the other hand,

2 along sections farther outboard, the magni-
~a tude of Ap/qa on the sonic wing must become
|

[\
oV

ot lower than that on the supersonic wing. This
'l BF follows immediately from simple sweep theory,
1 since the component of velocity normal to the

-

) — ~¢ .
leading edge 1s closer to the speed of sound
Ap than that for the sonic wing. In faect, it is
| e easy to show that at distances trar enough
qgoc o —=—1 outboard so that simple sweep theory applies6
7 \ the supersonic wing has a loading
7’ \
/ . <§ - szé) /2 times that obtained from
/. cc
slender wing theory.
0o ¢
(!) By an application of the above consider-

ations, it is possible to obtain an estimate
of the absolute value of the loading on a
wing-body combination at supersonic Mach

GSketech (jl) indicates the manner in which the loading approaches that
given by simple sweep theory as the reference station moves outboard.
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numbers. Another manner in which the results of slender wing theory can
be extended to Mach numbers other than 1 (or to plan forms which are not
sufficiently slender) is to form the ratio of the resulting values for
the wing plus body to those for the wing alone and apply this ratio to
solutions for the same wing or body at the required flight Mach numbers
(or slenderness factor). As has already been mentioned, the formation
of such a ratio for the load distribution is not possible from the solu-
tions presented herein since the wing trailing edges change to a certain
extent with the addition of the body. It is reasonable to expect, how-
ever, that a ratio of the integrated loading characteristics (i.e., 1ift,
drag, and pitching moment) formed by dividing the result for a wing-body
combination by those for a wing alone will be useful in estimating the
interference effects even if the wing trailing edges differ slightly.

Aerodynamic Characteristics

The results developed in the preceding section can now be converted
into forms which represent the aerodynamic characteristics of the wing
and body. Hence, the following will present the span loading, average
chord loading, 1ift, drag, pitching moment, and center of pressure for

the wing-body combination. '

Span loading.- The development of the span loading on the wing and

.body will be considered separately. First the span loading on the wing

can easily be determined from the value of AP given in a Preceding

section. Thus
Ly ff Ap
—_ = — dy dx
) g v

wing plan form

and since AQ at the leading edge is zero

%W =Tf23 f (&9 5, &

span

where (A@%T_E. is the value of A® on the trailing edge of the wing.
Since (Aq»T.E. also represents the total circulation about the wing

chord, there results for the circulation Iy developed by the wing and
the total wing 1ift Ly
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Iy = (A9 g,
Ly = oVo f ry dy (51)
span
/‘\<mq The equation for Iy can now be
o I fo So o determined from equation (29).
b 4 Between =1y and y = tg (see
y=mx sketch (m{) the value of I, is a
constant (this being the condition
Co by which the shape of the trailing
edge was determined). Between y= tgo
{_ﬁﬂ_ and y = sg, Iy is given by the value
of A® =along the section AA since
there is no loading between this
section and the trailing edge. Hence
A—x - — A
i N e :
Iy = 2Voaconm | 1- e » ToSy<to
] (s2)
(m)
and
SOZ-rOE 120
I'y = 2Vpa - E(ko,¥o)-ko' Flko,¥o) | , tol¥y<so (52b)
o

where ko and V, are defined in the table of symbols.

Some care must be taken in order to find the span loading on the
body. Since we are concerned here with the loading developed behind the
wing-leading-edge fuselage juncture, it is necessary to subtract the
value of A, at this station, shown as station AA in sketch (n), from
APy, at station BB also shown in sketch (n). For the total span loading,
then, it will be necessary to add to this value the load accumulated
on the nose of the body. Denote by (Pb)o the increment of circulation
developed by the nose of the body and by ([p), the increment of circu-
lation developed behind the wing-leading-edge fuselage juncture, that
is, between stations AA and BB.” Hence,

7Slender wing theory gives zero loading behind station BB as long as
the trailing vortex pattern does not vary.
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]

(ro), = (A9 5, - (A9, g, 1 —

(53)

(Ln)

poVo\jF (Pb)l dy -

The value of (AQ)1 g., see sketch (n),
can be obtained from equation (47) by
setting t;y and g; equal to ri. \
By transformation of the result into
the physical plane, one obtains

(ACP)L.E. = LI-VO(L ,/roz-yz

The span loading on the body is then
- given by

- Soz'roz 12 o 12
(I'b)1 = Wow { =5 Eo-E(ko,¥5)+ko' F(ko,¥2)-ko' Ko | +

2
0 2o [(50%+76%) 485"y 1(ro"-5%) -2 Jro®-y® } (5k)

where k; and V¥, are given in the table of symbols.

4
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Sketch (o) shows the
variation of the span loading
over the wing and body for a
body radius factor, ro/mco,
equal to 0.316 and a wing
semispan factor, sg/mco
equal to 1.7.

Section 1ift.- The wing-
section 1ift coefficient can
be calculated readily by
dividing the section chord
into the value of the span
loading at the same span sta-
tion. Along sections not
influenced by the tip cut-off
this is especially simple
since the span loading is

" constant. The value of the

section 1lift curve follows
immediately, therefore, from

table 2. Typical results are shown for a body radius factor equal to O
and 0.316 in sketch (p).

7.0 T
Asympfofe/
6.0 e =
/)K
al /] \
moe / >
T pme, = 316 /
5.0 / 0
4.0
0 / 2 y/me, 3

(p)
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section drag.- The value of the section drag can be wfitten
ca = acy + (cq), | (55)

where (cd)S represents the suction force at the section leading edge.
The magnitude of (cd)S can be evaluated (see, e.g., reference 8) by the
equation v

ea) = = (56)

where dF/dy is the suction force in the free-stream direction per unit
length normal to the free stream, and ¢ is the local chord.

Define a new set of coordinates, as shown in sketch (q), such that
Yyn lies along and x, lies perpendicular to the leading edge of one
wing panel. Then if

_ lim un(xn,¥n)
x> ofn T W J
Leading
(57)
edge
the suction-force component F (positive
in the positive x, direction) in the
free-stream direction is given by the
equation \\
{ / X ‘gf
dF 21 2 q
= = - =2 ¢%(x,y) (58) .
dy Pn

Now by differentiating equation (29) with respect to x and dividing
by 2 (to convert Au into u), there results

s%(y%-r5%) /(yz-tz)(yztz*ro4)

u = mV.ot. <—-S—2i(f> [E(k ¥o) - Zo Fko,¥o)+
ANIFE T Ky y(sBerg?) W (835 (57yPr*)

!
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and similarily v becomes

2 2 242 . 4 2_vy2
+1 s L e=1 te-
v = - Vow T2 <> (y2 s 1 y), y/meo> 1
2 (s y2-r04)(se-y2)

Since the normal component up 1is given by the equation

Un =

there results

52
et T (22 tioo)- 22wl e [eeRlmengt
1+m® Ko yt 1+m2 (Sz_yz)(seya_ro4)

[ m2(52+r02)(y2-r02) . s(y2+r02)
s2 2 y

], y/mcO >1
-Tro -

By means of equation (57), G can now be calculated. Hence, since

=1/ 14m® ,

a(y3+ry2) (y2-t2) (y3t=3-ro*)

G =
yt(1+m2) */* 2y(y4-ro*)

Finally, therefore, the suction force can be written

(59)

aF a®(y2ro®) [ (yz—te)(yzta-ro‘*)}
w T AR 2y(y®-ro°)

and, by using equations (55) and (56), the section drag coefficient can
be written



33

'NACA‘TN 255&
R R Ol O CICI .
20 o (c/co) | .l -<?9.2 ' Z
y

(60a)

In the region where the leading-edge suction force cannot be affected by
the trailing-edge shape, equation (60) reduces to the simpler form

4
ca _c1_ ®y/meo) [ B r_o> :I < ;
a®m am  (c/eo) 1 - ’ ro/meo<y/meo<l (60b)

The variation of the section drag coefficient is shown in sketch (r)
for two wings: one without a body, and the other with a body radius
factor equal to 0.316. x

R\
lp/Mcy= .316
\\ -/

2 \ 0
\
\\\ ’ 7
\Q:;’/~ N R
0
(4] ‘ / 2 )y/nu% f3
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Total lift.- The 1lift on the wing, the body, and the combination
can now be evaluated by means of equations (51) and (53) since the
expressions for I' are given by equations (52) and (54). The integra-
tion required is somewhat involved algebraically, but the final result
can again be expressed in terms of elliptic integrals. Thus, defining

Ak,¥) by

Ao(k,¥) = i[m’(k,#) + EF' (k,¥) - KF' <k,¢)] (61)

(tabular values for Ag can be found in reference 9), the total 1lift
carried by the wing is

~ =

2 2 2 2 ) I

Lnr Sp<-r to=+r 2 ! 2

i 2 OSO 9 { _Qto = JFEa-ko' ng -br LEo-ko' KOJ } -
(.

2 2 2‘2 4,4
soa+r02>2_ <t02—r02> } [(so +r > } <to +r g > J
x [( ~ - Ao(kp, ¥, )+2m " -
(62)

Equation (62) agrees with the results presented in references 3 and k4
when to = ro (the case of a triangular wing on a body) and rgy = 0
(the case of no body), respectively. When 8o equals t,, that is,
when there is no wing, L, equals O.

The 1ift on the body will be computed in two parts just as was the
span loading on the wing: the 1lift on the portion of the body behind the
wing-leading-edge fuselage juncture (Ip);, and the 1ift on the nose of
the body (Lb)o. It is a well-known result of Munk's airship theory that
the 1ift on the pointed nose is just

* L
S (63)
q_G.

and is independent of the shape of the nose.2 The value of the 1ift in
the vicinity of the wing follows from the integration of equation (54)
according to equation (53). The total 1lift on the body can then be
written ‘

8In this report, it is assumed that the nose is always ahead of the wing,
that is, the portion of the body on which the wing is mounted is every-
where a circular cylinder.
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| (Ip) +(1y) 2_. 2 2, 2 > \
Lp _ o/l _ , 5050 [hro <Eo‘ko'2Ko>- tooHres <E2-ko' K2>:] N

qa 9@ So to

' 2, 2\ 2. 2\° '
. {(so +ro >_<to To > } A(kp,¥,) - Enroz (64)
So to .

Setting tg5 = rgy, one finds the result given in reference 3 for a trian-
gular wing mounted on the cylindrical portion of a pointed body.

If to = ro = 8o, the wing disappears and equation (64) reduces® to
equation (63). If r, =0, L, reduces to zero.

Finally, the sum of equations (62) and (64) gives for the total
1lift of the wing-body combination, including the nose of the body,

1.6

4,4 { 4ip 4

2 2
q@ 50 to

(65) l=1r
P AT

, Sketches (s) and (t) show 7
the total 1ift on various wing- L /
body combinations together with 4q¢?

its division into the component ° N

parts carried separately by the L /s,=.8

wing and body. Various 1ift

coefficients, depending on the

choice of the reference ares, /4

can be formulated by means of A

the area-span relationship — /' N

given in figure 1.

Total drag.- In general, 4
the vortex drag can be calcu-
lated by finding the momentum /

transport through a plane perpen- /

dicular to the x axis and
located infinitely far behind 0 L=
the airplane. In sglender wing 0 2 4 6 8 1.0
theory the calculation of the r/s
total drag is simplified in two (s) o/ %o

ONote that A(k,1) = 1.
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ways: first, the vortex drag becomes the
,o:ro Lift on total drag (neglecting, of course, vis-
% f cosity), and second, in the calculation of
L — q . this drag the reference plane can be located
— Wing immediately behind the airplane since the

flow there is the same as it is infinitely

Body far back.
E Hence, a momentum balance gives for
' the drag
0 n/s, [/
So i
t,/57 .8 D= - pg f o APAy+PoTo f (vr), =ro(¢)r=rod9
A T (o]
{ 0
L 4
Wing (66a)
Body where w 1is the value of the vertical
ﬁl“ induced vel6ecity behind the wing in the
/ / = 0 plane. It is more convenient to
(t }0 ‘o /o perform this integration in the &, plane.

Equation (66a) can be put in the form

Ty
D=- "'f < >"’ Aq’ldyl‘pof W APy, (66b)
Yl -, 2

e}

where w and AQ; are given in the following.

For r12< yla\ tla, that is, between the
it is seen from equations (39b) and (31) that

yl“.lyla -1 2

B
]

body and the trailing edge,

- Voa: [l - le
r12

2
A9 = Vg [5,2-r,2 (By-k' Ky)

jl t12-71% 1
J s12-y12

Y (67a)
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»

For t12<y;2<s:% that is, on the wing, it is seen from equations (39a)

and (29) that

’/‘ R N
: W= =V

2
Voo /312_1-12 I:E(kl,‘{fl) - kl" F(kl,\yl)J

Finally, for y,®<r;% that is, on the body, equations (38a) and (L7)
“give ‘ .

(6T0)

AP,

w = -Voaa

Lo,

. 2 .
EVO@ 1812_1-12 IEEl-E(kl,\lfs) + kl‘ F(kl)‘ya) - P (670)
» 2.v.2 2.y 2
kl'zKl} + 2V /(Sl Y1 )(rl 71 )
2 2

. The substitution of equations (67a), (67b), and (67c) into
equation (66b) yields after integration ’

. . 2 N
. i—z = i& - W(s,2-r,2)(E,-k," Kl)(El'fkl‘?Kl') _ (68)

Y where L/qa is given in equation (65). In the ¢ plane equation (68)
* can be written in the dimensionless erm
. 2 o\2
D L Sp==T 2 2 ) '
> 2 - 2 ( 25 ) (Eo-ko' Ko)(Eo'-ko Ko') (69)
haaZs, 8qas, 802

. which for r; = O agrees with the results of reference 4. Egquation (69)
also checks with the result obtained for the drag by the method, pre-
sented in the preceding section on section drag, based on the calculation
of the suction force along the wing leading edge.
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total drag on various wing-

.8 Sketch (u) shows the
' | body combinations.

Chord loading.~- In
° order to find the center of
N-) pressure and pitching moment,
it is convenient to find
D first the chord loading,
which we will define as the
/ value of [(Ap/qa)dy where
N the integration is carried
4 1,/55.8 over the wing and body. The
7 /< chord loading can also be
7/

obtained by evaluating the
\ ﬂ

expression d(L/qa)/dx
since the latter term is

" /
2 // t=s a check, both methods were

equal to [(Ap/qa)dy. As
/ e used to derive the following

expressions.

/
////’ For the part of the
chord loading contributed
0 by the wing it can be shown
that

L 4_p 4

_(_S.o_._r..c.)_lm< - arc sin _Eiqr..o_ 3 ro/ms xS Co (708,)
80° 802412
o o o
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@) ()

Bo

{<-%“{-ﬁ%iJ%<:iw< ~—®}

(770p)

For the part contributed by the body behind the leading-edge fuselage
juncture it can be shown thaet

a (Lb) _ M(sot-ro? '
f < = (80%-To*) m arc sin _250%o_ » To/m<x<cy
q 802 So3+ro2 :

(T1a)

T v
[ - 2 Mt
— Yy = == = 3 m
ax /4, dx qo 80
o :

[(1- -) Ao(kg,xv4) + S_Z tozi:c,z) ( o) >J | (71p)

The total chord loading can be obtained by combining equatlons (70)
and (71). There results the expressions

for ro/mgx <co

N 4- . '
4 <P_> = brm <-————‘°‘° ;0%) (722)
dx \gw o]

and for cgo<x

; 4 4
a <L_ = lsm <.s£__'f_°_> G_.E.Q (72p)
dx \ ao 805 Ko
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Sketch (v) shows the variation of the chord loading with x

for ro/mey, equal to 0.316.
1.2
l
/‘\ ey /
8 | X I fo:.3,6 / /
' l | Co= / e
) § g <
/ P ——_——— A A Wing —
dy ng
2“f 7 / | e & “plus body
4 VX // /:\::~ S—
/// Wing3/ Body |
4 \
;4—*" 1/
0 e
o 4 .8 L2 1.6
(v) X

Center of pressure.- The results of the last section can be used to

determine the center ot pressure Xe.p.+ The value of Xo,p, 1s given
by the equation ”
So/m
X gﬁ dx
ro/m
Xc.p. T (73)

which excludes the loading on the nose.

sketch (w) was constructed.

By means of equation (73)
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LE A T T
- ,_/ \;‘,p— /
I Jep. —
1/ | 1
. -
' i. L : ///// Co =/
4 ////’////
(4]
(4] 4 & 1.2 1.6
(w} L
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IT - ADDITION OF A HORIZONTAL TAIL

) It is possible to use the calculations given in the first part of
this report to find the forces and moments induced on a horizontal tail
by the presence of the wing and body. The same assumptions that were
used for the solution of the load distribution over the wing and body
will be made here. Hence, the results will be principally valid for air-
planes having highly swept wings and tails or flying at Mach numbers
approaching 1.

In addition to the basic assumptions by which slender wing theory
is defined, however, some additional assumptions must be made concerning
the behavior of the vortex sheet trailing behind the wing and passing by
the tail. Actually these trailing vortices provide the only means by
which the wings can signal their presence to the tail, and except for

‘ them the slender wing theory analysis of the tail effectiveness would be
N, identical to that described in part I for the wing. Only two types of
trailing vortex patterns will be investigated. One composed of a flat
vortex sheet situated entirely in the =z = O plane (the plane of the
a wing), and the other composed of two completely rolled up point vortices
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situated symmetrically with respect to the y = O plane, located a
distance h above the =z = O plane and a distance a from plane of
symmetry. These patterns represent the two extremes of the actual phys-
ical behavior of a trailing vortex wake. It is to be expected that the
sheet is more representative of the true wake when the tail is located
only a short distance behind the wing. On the other hand, the twc point
vortices should be valid for tails located a large distance behind the
wing. An indication of the magnitude of the distances at which the two
assumptions are accurate can be obtained in reference 10.

Method of Solution and Boundary Conditions

. The partial differential equation that governs the flow in the
vieinity of the tail is, of course, identical to the one studied in the
first part of this report, namely, Laplace's equation applied to a ¥
plane (equation (2)). In fact, the general discussion of boundary con-
ditions and forms of solution given in part I still applies here. Hence,
the Joukowski transformation can again be used, the & plane having the
same relation to the £, plane as before and the integral relationship
given as equation (15) still applying.

The only mathematical difference between the study of the wing and
tail can be seen at once in the application of equation (15). 1In the
case of a flat wing, the vertical induced velocity w in equation (15)
was known to be a constant over the region occupied by the wing plan
- form. 1In the case of a flat horizontal tail, on the other hand, the
value of w over the region occupied by the tail plan form is composed
of two parts: one, the constant value fixed by the inclination of the
surface to the free stream, and the other, a distribution that is just
equal and opposite to the vertical velocity induced over the region by
the vortices trailing from the wing. Effectively, therefore, the analy-
sis of a horizontal tail is the same as that for a wing with a given
variation of twist and camber.

The additional notation necessary for the description of the
pertinent tail parameters is shown in sketch (x). The distance from
the x axis to the tail leading edge is represented by o, and the
slope of the tail leading edge is designated by M. In this report,
only triangular tail shapes will be considered; however, more complicated
shapes could be analygzed by the method presented.
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(x) l.4_a'°_..

) Vx

Solution for Trailing Vortex Sheet

Since the vortex sheet from the wing is assumed to lie entirely in
the z; = 0 plane, and since the outer extremities of this sheet are
at ts; (see sketch (y)), the study of this case can commence with the
inversion of the integral equation (15) of part I.

e

S1
JA : :
) - - 2 [ ), ()
» S8, ivJ2

For t,%<y,®<s;%, the value of Av,(y o) is given by equation (25a) and

for 03:2<y;2<%,3

Avl(yz) =0 (75)
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iz Physical plane

‘ Wing vortex wake
N\ / d
—] .
sav el on BN
s

) iz,

kL

Transformed plane

Wing vortex wake
/ %

Irl — l

g
(y)

Substitute these two values of Av; into eguation (74) and apply the
boundary condition that w; equals =-Voo in the interval 0<y;2<g,2.
Then, assuming t123>612, that is, the vortex sheet from the wing does
not cross the taill© (the condition shown in sketch (y)), there is
obtained, after inversion (see appendix B) and some manipulation, the
value of Av, on the tail. Thus

for 0<y.2<¢,2 and for t.2>g,2
1 1 1 1

2
S !
av; (1) evoayy 2V oy y \/”l dn (n-%1%) (n-0,%) (76)
\Ji/) = - - P P 2
/glz_ylg T /o'lz_ylz 't12 yl -1 (sl —T])(T]-I‘l ) :

This solution for Av; can now be used to determine the aerodynamic
characteristics of the tail in the presence of the vortex sheet trailing
back from the wing.

10mjg assumption applies to all subsequent analysis of the tail and
vortex sheet combinations.
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, Span loading.- The spanwise variation of circulation generated by
the tail surface is given by the expression

A, = f “avly.) dy | | (77)

& .
where Av is given in the ¢, plane by equation (76). On the portion
of the &, plane that is covered by the tail surface (i.e.,

for 1r2<y;®<0,2) this yields

T -1)( 'ﬂ"rlz)

2
s
1
% 2V,a n-tJ_E
ACPlt = 2V AI/ 0, =y, - —= (S >
: 5 1
tl .

(78)

To determine the span loading on the body it is necessary to subtract
the value of A9+ at the tail-leading-edge fuselage juncture. This
value is obtained from equation (78) by placing o, = r;. The span load-
ing on the body (i.e., for 0<y,2 <r12) is then given by the formula

APyt = 2Voa <~/ 012-}’12 -/ rlz-y12> +

2
81 / 2
2Voa / n-t,% [, 2y,
— / arc tan /——-—5— dn -
t.2 (312'11)(71'1'12) A N-Ty
1
2
81 ! R -
Voo f / n-t1% . 1012-y12 . (79)
—_— arc tan |[———— dn
n -t12 y. (312'71)(71'1'1‘2) ,\/ =0 12

Equations (78) and (79) have been transformed to the ¢ plane and the
results are shown in figure 2(a). In this and in all following numeri-
cal examples the wing will be fixed as the special type studied in
part I having the measures so/mcO = 1.7, to/mco = 1.091 and

ro/mCo = Oo3l6o
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Chordwise load distribution on the tail.- The distribution of load
over the tail surface can be calculated from the equation

Voa x Voa do; dx

where the value of a&¢&t/301, determined from equation (78), is given
by the express1on

8
aA@lt 2Voacl _ quo, \/Pl (n-t,23) dn
[018-y12 [ 0y2-y,2 .2 J(812-1) (n-r;2) (n-0,2) (n-t, 2)
(81)
By means of the substitutions
k42 _ (0,2-r,%)(5,%-%,%) , sn?u = (8,%-0,%)(n-t,%) (82)
(312'012)(t12'r12) (812_t12)(n_012)
equation (81) can be reduced to
OAP, ¢ _ 2V a0 1A (K Vo) (83)
ao'l 5 612_y12
where
Vo = (8k)

Hence, the loading on the tail can be written in the closed form

( ) /0—2—3)21 (85)

and since
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the final expression obtained by transforming equation (85) to the
£ plane is .

<A_P\ _ Motrotiu
3

Ao(kys¥g) (86)
Qo/y o ‘

where k4 and ¥g are the transformed values of kg and Vg and are
given in the table of symbols.

Total 1ift on the tall.— The total 1lift on the tail can be evaluated
| by use of the equation

g
L 2
2ol = [ a%y) ay (87)
qa Voa

which becomes in the &1 plane,

01 .
Lt 1 Ylﬁﬂ&(Y1)dyi
2qo. Voo f;;f:;;‘

The value of A®P; is given by the equations (78) and (79). Substitute
these expressions into equation (88) and, after integration, there
results

L’b— = n(tlz-r12-812+012) Ao(ks:*g) +

2qa

2 J (512-012) (£,2-7,2) [ES - (tl it )Ks} (89)

-0'1

In the £ plane this can be written

2
Ly | [ Leo® oD eoPaProl) L0 6h) g (ayuva) +
2q0 so2t02 052 0 "erTe
2
2(to2-ro") | .
—_— A[(»‘302-0‘02)(~°»02€fo.2--1‘o“) Ey - 43-3 K4> (90)
toso ko'S

A plot of this equation is shown in figure 3(a) for ro/mco = 0.316.
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Drag.- The drag of the tail can be calculated from the equation

where Ly is given by equation (90) and Ft 1is the suction force at
the leading edge. In a manner similar to that given in the first part
of this report under the subheading "Section drag," this force is
obtained from the equation

o
enq 2
Ft=--g—— G-dy (92)
n .
To
As before
lim un(xn;Yn)
G = Bp = Jx (93)
xp>o0 = Vo n
the values of u, and being, respectively, the normal velocity to

and the normal distance from the leading edge. Substituting these values
into equation (93) gives

GZ Aoa(ktp\ya) (9k)

_a® (-Y frot
2 «/l+u2 ys

and the expression for the suction force can be written

o
4_1 4
Yy =To
Fg = - Voaﬁnzp“f ( > Aog(k4;*s)dy (95)
) y®
: o
Hence, the total drag becomes
Dy Ly ¢ o%-r % 2
=2 [ (T8 a0y Yaay (96)
g ag g
To

This equation is plotted in figure 4(a) for ro/mco = 0.316.

Chord loading.- A closed formula for the loading can be obtained by
carrying out the integration _f(Ap/qg)tdy over the tail or by evaluating
d(Lt/qa) /x. However, since the term Ao(kg,¥g) in the expression
for Ap/qoa does not involve Yy, it is easier to evaluate f(Ap/qg)tdy.
Thus, using equation (85), the chord loading in the §&; plane is given by
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| y - dy.
o] 1\ qa /+
@) [ [
o .
o a%/¢ o t ry

(97a)

1
Y
a
o
>
[©)
—
b
a
-
&
@
~

In the & ©plane this becomes

f ( m( 4;§°4>A0(k4,\|f8) - (97)

(This checks with the result found by differentiating Lt/qg with
respect to x).

Center of pressure.- The center of pressure can be calculated by
means of the formula )

Oo/H

\/P X QEE dx
: ax
To/l .
- Xep. T o/ (98)
: Lt :

where st/dx is the result Jjust obtained in the previous section
and Lt is given by equation (90). Placing these values into °
equation (98) yields

. .
L (o) 0.4_1. 4 :
Xo,p. = = Jﬁ = Ao(kys, ¥e) dx (99)
P L 0.2
To

A graph of this result is shown in figure 5(a) for ro/ch = 0.316.

Solution for Rolled Up Vortices

As was pointed out in the preceding section where the method of
solution was discussed, the manner in which the present problem will be
attacked is as follows: First, the velocities induced at the surface of '
the wing and body by two point vortices located somewhere in space will
be calculated; second, a solution will be formulated (by methods identi-
cal to those used in part I of this report) that will just cancel the
vortex induced velocity component normal to the surface of the wing or
body; third, an additional solution will be formulated that will fit the
boundary condltlons prescribed for the tail surface (1n this report only
a flat-plate tail surface will be considered).
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As usual, it is simpler to work with the transformed £, plane
than with the physical ¢ plane. Hence, again the Joukowski transfor-
mation will be applied to the field equation and boundary conditions at
the outset of the problem. See sketch (z).

The veloclty potential
at a point (yi1,z1) in the
£1 plane induced by a pair of

Vortex location point vortices located at
,;7. y1 = ta; and z; = h; is

/</"\\\k given by the equation
h y
'; P a3

¥ o _ Ty (2zy1-hp)ays
\ / 4 | Vo e (y1-y2)2+(z1-h1)?

|

a (100)

A iz Physical plane

Transformed plane where Iy is the strength of
/ . the circulation carried by the
Vortex location 7 wing panels and trailing back

| 12,

from the wing tips. The value

of Ty /Vsame, that corresponds

/7, J to the swept-back wings studied
» in part I of this report is

1 given by equation (32a), thus

"’I"l ‘
o,

() i Lol ()]

The values of a; and h; depend, of course, on the span of the wing.
In order to compare the following results for the rolled up vortices with
those obtained for the sheet vortices in the preceding section, the
numerical results presented in the succeeding examples will be for

sofmeo = 1.7, to/meo = 1.091, and ro/mey = 0.316. This particular
choice of parameters fixes the span~-loading curve for the wing to be that
shown in sketch (o). A reasonable choice for the value of a can be
calculated by replacing the figure in sketch (o) bounded by the lines

Yy =To, I' =0 and the curve for P/Voamco by a rectangle with the same
height and area. The value of a is then given by the sum of the base
length of this rectangle and the quantity ro/mco. This procedure was
carried out and the result a/mco = 1.545 was obtained. In order to
obtain a more complete picture of the effect of the point vortices on
the aerodynamic characteristics of the wing, four different locations
were chosen for the positions of the vortices, two in the z = 0 plane
for values of a/mco equal to 1.545 and 1.3, and two at a height

h/mcO = 0.3 above the z = 0 plane for the same two values of a/mco.
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From equation (100) it can easily be shown that the value of the
~vertical induced velocity in the z; = O plane is

W)z [ wem T
M dz o Lhi®+(y1-21)2  h12+(yy+27)@
1 y1+a1

Z 1=0

The particular inversion of egquation (15) that fits the present boundary
conditions (see appendix B) can be written

2 Oy W

Avy(yy) = ) 017 -y2% dys (102)

1\Y1 :
7 /q12_y12 Ji1-Y 2

Place the value of wy given by %quation (101) into equation (102) and
add the condition that the tail be a flat-plate lifting surface at an
angle of attack a, and there results

-2Vodyy I'y A 1Z-0,% LY b,%-0,% .

—o‘l

Avl(yl) = prmSnsa e . 76 b

V/Glz_yle on,/ 6,2-y,2 Y110, Y101
Y/ b12-012 &/ b12—0'12 (103)

+ p— M B
¥i-by yi-ba
where
bl = aj + ihl

b1 = a1 = ih1 (104)

and where the radicals are defined uniquely if the complex plane is cut

along the real axis between -« and o;. (For example, 4/b;2-0,2 can
be set equal to ple1$1 where @; must lie between -n and w.)
Although the above expression for Av can be put in real terms by
applying the transformations '

ay = 0; cosh y, cos w;
lhll = 0y sinh 7, sin w, (105)

it is easier in deriving subsequent quantities from Av; 1o use
equation (103) first and to make the transformation afterwards.
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The terms sinh 7;, sinh 7., sin w;y, and sin wy are all defined in the
table of symbols. Equations (107a) and (10Tb) can, of course, be trans-
formed to the physical plane by transforming each symbol therein from
the &; system to the £ system.

The variation of the tail span loading, as given by equations (107a)
and (107b), is shown in figures 2(a) and 2(b) for the various vortex
positions discussed.

Chordwise load distribution.- The loading on the tail can be
calculated from the relation

N 2 P 2 49,4 do .
._.I_)) = t - 1t 901 (108)
@/, Voo Ox Vo Oo; dx .
The value of dA®P4/d0,4 follows from equations .(107); thus
Dot Aoy, FW( r 1 (109)
do N 012-y12 .[ T A P12-012 ,/312-012‘> }
Hence,
Ap hoy I'y sinh 7y cos w; doy
©/y W0y 2oy 2 Voarnoy (8inh®7, +sinw,) | dx

Equafion (110) when transformed to the ¢ plane gives the surface load
distribution over the tail due to the presence of the two point vortices
as well as the inclination of the tail to the free stream.

Total 1lift.- The total 1ift can be obtained by integrating the span
loading. Thus, if Ig represents the 1ift on the tail,

- o . .
.2 APy dy (111)
g Voo
Carrying out this integration yields
Lt 2y ’ '
—~— = n{0,2-r,2) - =X (r, sinh 7, cos w_.-g, sinh 7,cos w,)
o9 1Tt Vou 1 2 2=V 1 1

‘(ll2)
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This result was transformed and plotted in figures 3(a) and 3(b) for the
values discussed.
Total drag.- The total drag is given by the relation
Dt = aly + Fy (113)
‘where F is the suction force on the tail leading edge. As in previous

steps (see, e.g., equation (92)) the calculation of Fy depends on the
evaluation of the function G. In this case G2 is

o2 [y4-ro4 r N r ( 1 N 1 >:|2 (11k)
o4 1402 ye L Voart \ ,/5,2-6,2 /b,2-g,2

The final result, in the ¢, plane, for the total drag can be written

w]

Ly \%
2t - n(012-r12) + L /-—‘i in
qo.® 2 \ Voo

(ala-h 12—0 12)2"-)4-3.12}.'112 +(8.12 -h12 -0 ]_2) ;\/(alz —h12 -0 12 )2+)4>8.12h12

(115)

( a.12-h12 —r12 )2+u8,12h12+( 312 -h12 —r12 ) /( 8.12 -h12 -I'l2 )2+ll~8,12h12

A plot of the drag is given in figures 4(a) and 4(b).

Chord loading.- As before, in the development of equations (97a)
and (97b% for example, the chord loading can be calculated either by
performing the integration [(Ap/qa)y dy, or by differentiating with
respect to x the total 1ift (Lt/q@). These two different approaches
gserve to check each other and both lead to the same result, namely,

o .
nh
Ef <é1_)> dy = bno, doy [l _ Dy sinh 7y cos v, ~1I (116)
| \©/y ax Voaoyn(sinh®yy+sinw,)

Center of pressure.- Results for the center of pressure Xc,p.
(where xc.p. = -Mt/Lt) are shown in figures 5(a) and 5(b).
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1

CONCLUDING REMARKS

When an airplane is slender enoughl! (in the longitudinal sense) or
1s flying close enough to the speed of sound, the mathematical descrip- -
tion of its attendant flow field is greatly simplified - so much so, in
fact,. that the analysis of whole wing-body-tail combinations is feasible.
This simplification comes from the fact that the induced velocities in
each lateral plane are completely independent of the nature of the air-

- plane or flow field behind the reference Plane and are affected by
disturbances ahead only through the presence of free vortices trailing
downstream from the lifting elements. In the case of a tail, these free
vortices stream back from the wing trailing edge.

In this report, special wing plan forms were studied: special in
that they produced flat span-loading curves between the wing tips and
fuselage. For such wings, the free trailing vortices were concentrated
entirely in the region directly behind the wing tips. In general, the
trailing vorticity would be concentrated predominately in this region.
The behavior of this trailing vortex system is bounded by the behavior
of two extreme models: a vortex sheet lying everywhere in the plane of
the tail, and two laterally symmetric point vortices lying in or above
the plane of the tail. Each of these models was examined.

One point vortex was placed in the plane of the tail at a distance
from the fuselage in the spanwise direction determined by replacing the
wing-span loading curve by a rectangle of the same height. As shown by
figures 2 through 5, the results for this point vortex were not signifi-
cantly different from those for the vortex sheet. In either case, the
presence of the trailing wing vortices reduced by about 40 percent the
effectiveness of the triangular tail surface in producing 1lift for the
range of tail spans and body diameters considered. For the same condi-
tions the tail drag was reduced only 18 percent.

For the particular locations chosen for the point vortices, it was
found that both the 1ift and drag decreased as the vortices moved closer
to the tail. On a percentage basis the decrease was roughly the same.

1lThe assumptions underlying slender wing theory are obviously violated
along lines such as the leading edge, x = mcy, and the Mach wave from
the trailing-edge-fuselage juncture, x = co. Along these lines the
pressure gradient is discontinuous and (M02—l) Pxx 1is not bounded.
Similar situations appear repeatedly in the linearized analysis of
aerodynamic flow phenomena and in each case agreement with experi-
mental results cannot be anticipated.
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The position of the center of pressure on the triangular tail was
insensitive to the presence of the wing vortex system regardless of the
vortex pattern chosen. In the extreme case, when the point vortices were
nearest the tail, the location of the tail center of pressure with refer-
ence to the tail apex as 5 percent forward of the position obtained when
the wing was absent.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 20, 1951
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APPENDIX A

LIST OF IMPORTANT SYMBOLS

a hbrizontal distance from y=0 plane to vortex
(See sketch (z).)

by ay + ihj

51 a; - ih,

c Jlocal chord

Co characteristic chord

(see sketch (a).)

eq section 8rag coefficient <(—;—’E>

ey section 1ift coefficient <—Z—>
- gce

d gsection drag force

D drag force

Eq . complete elliptic integral of the second kind( / >
l k2t2
B(k,¥) incomplete elliptic integral of the second kind

F suction force at leading edge of lifting surface

F(k,¥) incomplete elliptic integral of the first kind
(L)
; (1-k2t2)(1-t2)

h vertical distance from 2z=0 plane to vortex .
(see sketch (z).)

Ko complete elliptic integral of the first kind
»<k/ﬂl at )
o d(i-ko2)(1-t2)
k modulus of elliptic integrals

k! J1-k2




58

alB

To

80

NACA TN 255k

N (s2tZ-r0%) (5517

t( 8 2-1‘0 2)

ko in the &1 plane <
W s18-r12

oroy (s%3-vo%) (s2-t3)

(8%-10%) (t31rc5)

T 512-t12
t14/81%r1 %
02-1‘ o3) ./ -t2) 82t 2ar 1)
£%-r0#W (5%-0%) (s%0%-r0%)
kg4 in the ¢&; plane (_./(012-1'12_____)(__3_12-1:_12)>

section 1lift force

ko in the §,; plane

1ift force

slope of wing leading edge
(see sketch (a).)

pitching moment, positive when tail is forced down
free-stream Mach number

local gtatic pressure
loading coefficient <P.L(;_I_)B>
free-stream dynamic pressure (%- pOV02>

radius of body
(see sketch (a).)

distance from x axis to wing leading edge
(See sketch (a).)

maximum value of s
(see sketeh (a).)

wing area

distance from x axis to wing trailing edge
(see sketch (a).)

maximum value of t
(See sketch (a).)
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U,V,w
FAPRYAN'SWANY

Vr
Vo
X,¥,2

Xec.p.

ginh %

sinh A

perturbation veloc1ty components in the x,y, directions,
respectively

Jjump in velocities across z=0 plane, Uy =Uy, Vy=Vy, W, n-V1s
respectively

radial component of perturbation velocity in a V,Z DPlane
free-stream velocity

Cartesian coordinates

¢

distance to center of pressure
(See sketch (w) and fig. 5.)

angle of attack of airplane

N MpE-1
__|hy]
01 5inwy
|n,|
Ty 8in wo
total circulation about wing section [(A@)T.E.]

2
y .

polar angle in y,z Dplane
2
T [IiE(k':W) + (E-K)F(k')w)]

slope of tail leading edge
(See sketeh (x).)

complex variable (y+iz)
polar distance in y,z plane (& y2+z2)
free-gstream density

distance from x axis to leading edge of tail
(see sketch (x).)

perturbation velocity potential
jump in @ across z=0 plane " (Py-P3)

value of AP at trailing edge
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L L)
.2
sin Wy

sin® Wo

12

13

argument of elliptic integrals

o (s32-10*) (s2-y®)t2

V5P B0 (520 2)y 2

R € =y
v os1-ty

ro°-y2
~/(t2+r 2)2 | )22

¥, in §&; plane

J/T12-112 >
t1 -yi
s(t2+r02)

t( gt 4res )

. ty
V¥, in &, plane EI)

82-r02
2 2
S +Trop

V¢ in &; plane

5

s(tf-r2)
t(f-rs°)

[+~ 2 .2
¥g in &1 plane yau -n- )

[012-a12-h12+~/(a12+h12-012)2 + 40,2h,2]

2012

_[rle—ala-h12+~/(a12+h12—r12)2 + hrlehlel

2r12

Subscripts

transformation to the physical plane

boundary conditions given by equations (12)

boundary conditions given by equations (13)

NACA TN 2554

complex plane resulting from the application of the Joukowski




24

]

NACA TN 2554

a wake

b body

2 lower surface of z=0 plane

n component normal to leading edge
t tail

u upper surface of 2z=0 plane

v rolled ui) vortex

W wing

61
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APPENDIX B

INVERSION OF AN INTEGRAL EQUATION

The integral equation

b
lf Lv(n2dn e
f = - = —oA2 2 (B1)
(711) 5% Jg P
can be inverted by applying operational technigques. Consgider the
operator
b
h d
J/‘ (nydna (B2)
a A-N1 :

where h(nJ) is a function to be chosen later. Operating on both sides
of equation (Bl) yields

b b b
h(ng)f(ngany _ _ 1 AV(q 2h(n 1)
“/; 1"'“1 e ‘[; dnlfa e (nrn2(A-11) (33)

where the order of the integral and differential signs on the right-hand
gide of the equation indicates that the 1o integration is to be per-
- formed first.

The next step is to reverse the order of integration in the double
integral term in equation (B3). Since an inherent singularity exists in
the area of integration at the point 1731 = 12 = A, however, some care
must be used in order to obtain this reversal. Designating by R()) the
difference between the term taken first with one order of integration and
then with another, thus

oAb b , b b
R(\) = [ @ anp Avnzh(ny) /"4 an. Av(n2)h(n1)
" 'Lj n]:/; nzy(ﬂrﬂz)(k-nl) /; nzL/; b (n1-n2)(x-n1)
(BY4)

R()\) can be evaluated by isolating the singularity and studying the
difference only in its vicinity. Hence,
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A€ At+e | (na)n(na) A€ Ate (ne)n(na)
R(y) = lim a an. &vinz)h{n1 - a an.-2vina)h(ni
o) e—%[ .):[e nl)‘v_[e e (n1-n2)(x-n1) )»[e nexz; nl(nl—nz)(X-nl):l

(B5)

Using the transformations mn; = A-€x; and 1z = A-€Xs, equation (B5)
can be reduced to the form

, ' 1 1 gk, 1 1 ax,
R(») = Av()\)h ax —2 ./ g —
(x)» v())h(r) [Z: 14 - [1 x%[l e }
= aavin(y) [ &L 0 %’—}9-
o +X1
=AY )h(2) | (B6)

Substitute equations (B6) and (B4) into equation (B3) and there
results

fb h(n)e(ns)an _ _1_{ AR +fZV(nz)dn2fb n(m )an ]

A-M1 en a a (ni-n2)(x-m1)

or

[ g;[bAv(nZ)dnzL/b h(n1)dm +/“bh(n1)f(n1)dn1'J (B7)

Av(r) =
v i, (T]]_'ng)()\"nl) i, A=T1

2
nh(x)

If h(ni) = ~/(b-nl)(nl-a) equation (B7) becomes

b b -
} 2 1 £(n1) //(5-11) (n1-2)
Av(n) - TE:XT(;:ET [ 2\%: Av(ngz)ans +hL: _— dﬂl]

(B8)

Since, however, equation (B8) contains both Av and its integral, it
does not represent a unique solution for Av. In order to obtain a
unique solution, some additional condition must be imposed. If this
condition is that Av(a) = O, then the proper choice of h(m;) in equa-
tion (B7) is :




6L NACA TN 255k

which leads immediately to the unique result

b
_ 2 A-8 f(n Pdn b-n
o) - £ /i [ e e (39)
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TABLE I.- POSITION OF TRAILING EDGE
ro/meg=l 0 ]0.100{0.224{0.316]0.447]|0.500]0.600]0.700]0.800 0.900
x/co | y/meo|y/meo|y/meo|y/meo|y/meo|y/meo|y/meoly/meo| v /meol v /meo
1.00 0 0.100{0.224{0.316{0.447}0.500[0.600{0.700[0.800{0.900
1.05 .168| .213| .323| .413] .542| .593| .690] .791] .883| .970
1.10 2561 .290{ .387| .L473] .598] .6u49| .746] .84k| .933|1.020
1.15 .332] .361] .hhT| .526| .648] .699| .796| .890| .982|1.067
1.20 kool .u25) .504| .5T79] .698! .7u8| .845! .933]1.031]|1.113
1.30 526( L5U51 .61k .682] .797| .845| .94111.028]1.126]1.213
1.40 Lol 661 L721) .786| .896| .941]1.033|1.123|1.221)1.312
1.50 L7561 JT73( 8261 .888| .993{1.036]1.128|1.217{1.315|1.410
1.60 .867|-.884| .931] .990|1.090|1.130|1.222|1.312|1.412]1.506
1.80 1.08311.096(1.140{1.192{1.283{1.323}1.413]1.504{1.606|1.703
2.00 1.297{1.308{1.394]1.393(1.482]1.522{1.610|1.700|1.800]1.800
2.20 1.507{1.516/1.555[1.596(1.676]1.723]1.803]1.893]1.996{2.100
2.60 1.91 (1.92 |1.96 |2.00 |2.07 [2.12 |2.20 |2.29 |2.39 |2.50
3.00 2.32 12.33 {2.37 [2.40 |2.47 |2.52 |2.50 |2.69 [2.79 [2.90
3.50 2.83 [2.84 [2.87 [2.91 [2.98 |3.02 {3.10 |3.19 3.29 [3.39
4.00 3.33 |3.34% |3.38 |3.41 [3.49 [3.52 [3.60 |3.69 [3.78 |3.89
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TABLE II.- VALUES OF LOCAL CHORD
r/meo=| O 0.1000.22}4{0.316]0.4%47 |0.500 |0.600 [0.700 |0.800 0.900
Y/mco c/Co C/Co C/Co C/Co c/Co C/Co C/Co C/Co C/Co C/Co
0 1.000]~ = =t= = == = =t = oo = e o e e m e = e o -
.100 | .9260.900f~ = =|= = =f= = ~|= = =fo = =f= = |- = ]2 - -
.227 | .910| .83L|0.7T76| - = ={- = =)= = =f= = =f= = =f= = =]= = -
.316 | .826] .802] .732]0.68h4]~ = |- = =f- = =} - |- - 2. - -
LT L7900 .772) .703] .633]0.553]= = == = =f= = =)= = =|=- = -
500 | LTTT) 761 .695| 6271 .522{0.500|~ = =f~ = |- = =}~ = -
.600 | .760| .TW6| .685] .620| .504] .462{0.400f~ = ~|= = <|- - -
.700 | .T48] .735] .679] .617| .498| .451( .3620.300|- - |- - -
.8 L7381 724 673 .614| .500( .k52f .355) .2620.200{- - -
.9 L7281 L7151 668 .612] .503| .459] .358] .260| .170]0.100
1.0 722 .709| .665| .610| .505| .64 .365( .269] .170]| .082
1.1 .7T19] .T0k] .661| .608) .508] .468| .372| .278]| .175| .079
1.2 .7081 .697| .658] .607| .512] .42 .376] .285| .180{ .081
1.3 703 .692] .653] .606| .515} k75| .381| .290| .185| .087
1.k 6991 .6881 .651| .605| .518| .477| .385] .294| .189| .09k
1.6 6921 .682{ .645] .603] .522| .480} .392| .299| .196 .098
1.8 L6871 .677| .642| .601] .524| 481 .396( .302| .200! .100
2.0 6821 .672] 639 .599] .525( .482| .398] .305( .20h| .100
2.5 674 L6631 631 595 .522] .u84| .403( .311f .212] .101
3.0 L6691 .657| 6251 .593| .519] .485| .ho6| .315] .218] .102
4.0 .660| .648] .613] .592| .514| .485( .L41o0| .318] .225| .102
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(a) Vortex sheel.
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(b) Point vortices.
Figure 3.- Variation of the lift on the tail.
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(b} Point vortices.

Figure 4.- Variation of the drag on the tail.
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Figure S5.-Variation of the center of pressure location
on the tail.
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